Superrelaxation and the rate of convergence in minimizing quadratic functions subject to bound constraints

نویسندگان

  • Zdenek Dostál
  • Marta Domorádová
  • Marie Sadowská
چکیده

The paper resolves the problem concerning the rate of convergence of the working set based MPRGP (modified proportioning with reduced gradient projection) algorithm with a long steplength of the reduced projected gradient step. The main results of this paper are the formula for the R-linear rate of convergence of MPRGP in terms of the spectral condition number of the Hessian matrix and the proof of the finite termination property for the problems whose solution does not satisfy the strict complementarity condition. The bound on the R-linear rate of convergence of the projected gradient is also included. For shorter steplengths these results were proved earlier by Dostál and Schöberl. The efficiency of the longer steplength is illustrated by numerical experiments. The result is an important ingredient in development of scalable algorithms for numerical solution of elliptic variational inequalities and substantiates the choice of parameters that turned out to be effective in numerical experiments. AMS classification: Primary 65K05; Secondary 90C20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sum-Rate Maximization Based on Power Constraints for Cooperative AF Relay Networks

In this paper, our objective is maximizing total sum-rate subject to power constraints on total relay transmit power or individual relay powers, for amplify-and-forward single-antenna relay-based wireless communication networks. We derive a closed-form solution for the total power constraint optimization problem and show that the individual relay power constraints optimization problem is a quad...

متن کامل

An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications

We propose a modification of our MPGP algorithm for the solution of bound constrained quadratic programming problems so that it can be used for minimization of a strictly convex quadratic function subject to separable convex constraints. Our active set based algorithm explores the faces by conjugate gradients and changes the active sets and active variables by gradient projections, possibly wit...

متن کامل

Convergence Rate of an Optimization Algorithm for Minimizing Quadratic Functions with Separable Convex Constraints

A new active set algorithm for minimizing quadratic functions with separable convex constraints is proposed by combining the conjugate gradient method with the projected gradient. It generalizes recently developed algorithms of quadratic programming constrained by simple bounds. A linear convergence rate in terms of the Hessian spectral condition number is proven. Numerical experiments, includi...

متن کامل

Solving the Single Machine Problem with Quadratic Earliness and Tardiness Penalties

  Nowadays, scheduling problems have a considerable application in production and service systems. In this paper, we consider the scheduling of n jobs on a single machine assuming no machine idleness, non-preemptive jobs and equal process times. In many of previous researches, because of the delivery dalays and holding costs, earliness and tardiness penalties emerge in the form of linear combin...

متن کامل

Minimizing Quadratic Functions Subject to Bound Constraints with the Rate of Convergence and Finite Termination

A new active set based algorithm is proposed that uses the conjugate gradient method to explore the face of the feasible region defined by the current iterate and the reduced gradient projection with the fixed steplength to expand the active set. The precision of approximate solutions of the auxiliary unconstrained problems is controlled by the norm of violation of the Karush-Kuhn-Tucker condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2011